Use of crowdsourcing at Statistics Canada during the COVID-19 pandemic

Presentation to the Centre interuniversitaire québécois de statistiques sociales

Martin Renaud March 30, 2021

Delivering insight through data for a better Canada

Presentation plan

- 1. Background
- 2. Methodology's role
- 3. Methodological considerations
- 4. Research
- 5. Moving forward

- Crowdsourcing: A non probabilistic method of collecting data by inviting all members of a target population to voluntarily participate in a data collection exercise on a topic of interest.
- Previous crowdsources in Statistics Canada
 - Building register (Ottawa-Gatineau area)
 - Cannabis
 - Market basket measure

Document on methodological considerations on crowdsourcing

- March 2020: COVID-19 pandemic
 - Data gap

 urgent need for timely data
 - Country wide shutdown
 - Citizens engagement
 - Favorable conditions to use crowdsource as a data collection tool

Impact of COVID-19 on Canadians: Data Collection Series

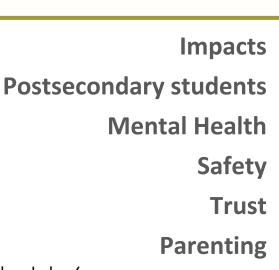
9 completed crowdsourcing projects

Impacts of COVID-19 on Canadians, April 3 to April 24

Postsecondary students, April 19 to May 1

Your Mental Health, April 24 to May 11

Perceptions of Safety, May 12 to May 25

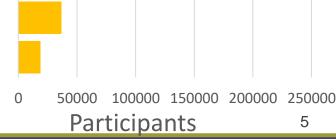

Trust in Others, May 26 to June 8

Parenting During the Pandemic, June 9 to June 22

Living with Long-term Conditions and Disabilities, June 23 to July 6

Experiences of Discrimination, August 4 to August 24

Impacts of COVID-19 on Health Care Workers, Nov. 24 to Dec. 13 Health Care Workers



Disabilities

Discrimination

- Email address & phone number of participants asked at every crowdsource.
 - Used to contact participants in upcoming initiatives.
 - A little more than 50% provide an email address (almost 130,000 addresses after 1st crowdsource).
- Previously collected email addresses used to stimulate participation.
 - Started with Mental Health crowdsource.
 - Used only when applicable (ex: not used for parenting crowdsource)
- Maintenance and management of email database

Participation rate << 1% → Bias

- Efforts geared towards
 - Mitigating bias
 - Ensuring rigor and data quality
 - Validating results
 - Guiding interpretation and analysis

- Mitigating bias
 - 3 of 4 participants are women
 - Teens and seniors, low participation
 - Ontario and Nova Scotia participate well, Quebec not so much

- Daily collection monitoring reports
 - Targeted follow-up

	ı	Province						
Gender	Age Group	Atlantic	Quebec	Ontario	Prairies	ВС	Terr.	Total (missings incl.)
Male	1	18	87	124	38	31	0	299
	2	157	480	860	281	224	14	2,018
	3	232	476	1,204	394	315	13	2,639
	4	189	410	977	305	249	8	2,143
	5	153	318	870	253	233	10	1,846
	6	90	276	647	175	225	8	1,425
	Total (missings incl.)	840	2,048	4,690	1,448	1,281	53	10,392
Female	1	59	75	229	87	55	1	510
	2	414	716	2,221	716	564	31	4,671
	3	728	1,064	3,489	1,194	1,089	42	7,616
	4	670	891	2,636	768	847	39	5,865
	5	478	661	2,006	670	709	36	4,565
	6	259	312	1,235	364	525	19	2,725
	Total (missings incl.)	2,613	3,723	11,837	3,804	3,793	168	25,998
Total (missings and others included)	1	85	165	370	138	90	1	855
	2	594	1,217	3,148	1,031	815	45	6,863
	3	967	1,548	4,738	1,615	1,424	55	10,366
	4	867	1,306	3,636	1,081	1,110	47	8,067
	5	635	982	2,890	929	945	46	6,442
	6	350	591	1,886	542	758	27	4,170
	Total (missings incl.)	3,504	5,815	16,700	5,346	5,151	222	36,851

- Mitigating bias
 - Benchmarking strategy (benchmarking factors)
 - Basic adjustments to known control totals (ex: sex/age groups/geography)

$$BF_{ijk} = \frac{N_{ijk}}{n_{ijk}}$$

$$i: sex \quad j: age group \quad k: province/territory$$

$$\sum_{i,j,k} N_{ijk} = N$$

$$BF_{ijk}^* = \frac{n}{N}BF_{ijk}$$
 To be used on the Public Use Microdata File

Collapsing as necessary

- Mitigating bias: control totals used in benchmarking
 - General population, Mental health, Perceptions of safety, Trust in others
 - February 2020 demographic projections, number of people by province, sex, age groups

- Postsecondary students
 - Projected number of students enrolled in a postsecondary program on March 1, 2020 by sex, province of study, level of study

- Mitigating bias: control totals used
 - Parenting during a pandemic
 - 2020 projected number of families by province with children
 - 0-5 years old / 6-14 years old / 0-14 years old

- Living with long-term conditions and disabilities
 - 2016 Census counts of people living with a long-term condition or a disability by province, sex, age group

- Mitigating bias: control totals used
 - Experiences with discrimination
 - June 2020 demographic projections, number of people by province, sex, age group, and visible minority status

- Health care workers
 - Numbers of health care workers by province and type of job

- Ensuring rigor and data quality
 - Basic data verifications
 - Ex: Valid postal code
 - Outlier detection
 - Ex: Unusually large number of children in household
 - Out of scope records
 - Ex: Individuals less than 15 years old
 - Collection issues
 - Ex: Multiple answers from one participant

- Validating results
 - Comparisons to other reliable sources when possible
 - Ex: Crowdsource #1 vs Canadian Perspective Survey Series #1
 - Ex: Gender diverse vs Census Test results

Raw vs benchmarked results

- Guiding interpretation and analysis
 - Adapted terminology
 - Respondents -> Participants
 - Survey → Data collection initiative
 - Estimates → Results
 - Weighting → Benchmarking
 - No data quality measures
 - CV's, confidence intervals, margin of error

- Guiding interpretation and analysis
 - Warning about crowdsourcing

Unlike other surveys conducted by Statistics Canada, crowdsourcing data are not collected under a probability sampling design. As a result, the findings reflect only the responses of those who completed a questionnaire, and thus cannot be generalized to the entire Canadian population.

Proportions only, no totals

- Document on methodological considerations about data collection using crowdsourcing in Statistics Canada (SSMD, April 2020)
 - Context
 - What is crowdsourcing?
 - Purpose of crowdsourcing
 - Considerations
 - Inferential limitations
 - Preparing for crowdsourcing data collection
 - Releasing results from crowdsourcing

- Preparing for crowdsourcing data collection
 - Demonstration of the necessity of collecting such data (principles of necessity and proportionality)
 - Management approval
 - Questionnaire approval
 - Consultation with:
 - Subject matter
 - Methodology
 - Data collection experts
 - Communications experts

- Preparing for crowdsourcing data collection
 - Development of the crowdsourcing tool
 - Data verification rules (outlier prevention)
 - Quality indicators summarizing verifications and assessing comparability
 - Safety measures:
 - In-scope IP addresses
 - High number of responses from one IP address
 - Prevention against bot answers
 - Outlier detection
 - Confidentiality measures

Identified as a priority by the Advisory Committee on Statistical Methods

- Releasing results from crowdsourcing
 - Results should be accompanied by the relevant following statements to inform users of the data limitations
 - Who was invited to participate on a voluntary basis, and how
 - Number of valid questionnaires
 - Start and end of data collection
 - Information about outlier detection, data correction, data exclusion
 - Disclaimer about the absence of a sampling design → No measures of precision
 - Information about benchmarking process
 - Warning about bias and interpretability
 - Quality indicators produced

- In the process of developing a directive on crowdsourcing at Statistics Canada
 - Legal context
 - Definitions
 - Objective and expected results
 - Responsibilities of every party involved

22

4. Research

Why was research needed?

- First crowdsourcing cycles:
 - No time to develop complex methods for reducing bias
 - Implemented post-stratification by age, sex and province:

post-stratified estimates close to unweighted estimates

- Need to use other auxiliary variables and more sophisticated weighting methods for further bias reductions
- Four research projects on data integration methods: combining crowdsourcing data with data from other probability surveys

4. Research

Objectives

- 1. Reduce the bias of the crowdsourcing estimates
 - Propensity score weighting
 - Some auxiliary variables (ex: education) are effective at reducing bias
 - Significant amount of bias still remains
 - Sample matching
 - Not as effective as propensity score weighting to reduce bias

4. Research

Objectives

- 2. Reduce the variance of probability survey estimates
 - Small area estimation
 - Substantial precision gains are observed
 - Not for all characteristics of interest (smaller for proportions near 0 or 1)
 - Dual frame weighting
 - Variance reduction is quite small in general
 - Larger variance reduction expected with a moderate to large participation rate

5. Moving forward

- Careful analysis of the needs before using crowdsourcing
- What is important? Time, cost, accuracy, ...?
- Other options
 - Alternative sources of data (if available)
 - Probability surveys
 - Better control over the potential bias even when the sample size is small
 - Similar time frame in some cases
 - Ex.: Canadian Perspective Survey Series

5. Moving forward

Continue research projects

Develop quality indicators

Protect against vulnerabilities

Finalize directive on crowdsourcing

QUESTIONS?

Thank you! **Martin Renaud** martin.renaud@canada.ca

